3.11.73 \(\int \frac {x^{9/2}}{(a+b x^2+c x^4)^2} \, dx\) [1073]

Optimal. Leaf size=471 \[ \frac {x^{3/2} \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\left (b^2+12 a c+b \sqrt {b^2-4 a c}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-b-\sqrt {b^2-4 a c}}}+\frac {\left (b-\frac {b^2+12 a c}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right ) \sqrt [4]{-b+\sqrt {b^2-4 a c}}}-\frac {\left (b^2+12 a c+b \sqrt {b^2-4 a c}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-b-\sqrt {b^2-4 a c}}}-\frac {\left (b-\frac {b^2+12 a c}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right ) \sqrt [4]{-b+\sqrt {b^2-4 a c}}} \]

[Out]

1/2*x^(3/2)*(b*x^2+2*a)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/8*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2)
)^(1/4))*(b+(-12*a*c-b^2)/(-4*a*c+b^2)^(1/2))*2^(1/4)/c^(3/4)/(-4*a*c+b^2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4)-1/8*a
rctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(b+(-12*a*c-b^2)/(-4*a*c+b^2)^(1/2))*2^(1/4)/c^(
3/4)/(-4*a*c+b^2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4)+1/8*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/
4))*(b^2+12*a*c+b*(-4*a*c+b^2)^(1/2))*2^(1/4)/c^(3/4)/(-4*a*c+b^2)^(3/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4)-1/8*arc
tanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(b^2+12*a*c+b*(-4*a*c+b^2)^(1/2))*2^(1/4)/c^(3/4)/
(-4*a*c+b^2)^(3/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4)

________________________________________________________________________________________

Rubi [A]
time = 0.62, antiderivative size = 471, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {1129, 1379, 1524, 304, 211, 214} \begin {gather*} \frac {\left (b \sqrt {b^2-4 a c}+12 a c+b^2\right ) \text {ArcTan}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{4\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}+\frac {\left (b-\frac {12 a c+b^2}{\sqrt {b^2-4 a c}}\right ) \text {ArcTan}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{4\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right ) \sqrt [4]{\sqrt {b^2-4 a c}-b}}-\frac {\left (b \sqrt {b^2-4 a c}+12 a c+b^2\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{4\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\left (b-\frac {12 a c+b^2}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{4\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right ) \sqrt [4]{\sqrt {b^2-4 a c}-b}}+\frac {x^{3/2} \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^(9/2)/(a + b*x^2 + c*x^4)^2,x]

[Out]

(x^(3/2)*(2*a + b*x^2))/(2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + ((b^2 + 12*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(
2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(4*2^(3/4)*c^(3/4)*(b^2 - 4*a*c)^(3/2)*(-b - Sqrt[b^
2 - 4*a*c])^(1/4)) + ((b - (b^2 + 12*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 -
 4*a*c])^(1/4)])/(4*2^(3/4)*c^(3/4)*(b^2 - 4*a*c)*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) - ((b^2 + 12*a*c + b*Sqrt[b^
2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(4*2^(3/4)*c^(3/4)*(b^2 - 4*a*c
)^(3/2)*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) - ((b - (b^2 + 12*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqr
t[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(4*2^(3/4)*c^(3/4)*(b^2 - 4*a*c)*(-b + Sqrt[b^2 - 4*a*c])^(1/4))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 1129

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[
k/d, Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[
{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]

Rule 1379

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-d^(2*n - 1))*(d*
x)^(m - 2*n + 1)*(2*a + b*x^n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(n*(p + 1)*(b^2 - 4*a*c))), x] + Dist[d^(2*n)/
(n*(p + 1)*(b^2 - 4*a*c)), Int[(d*x)^(m - 2*n)*(2*a*(m - 2*n + 1) + b*(m + n*(2*p + 1) + 1)*x^n)*(a + b*x^n +
c*x^(2*n))^(p + 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && I
LtQ[p, -1] && GtQ[m, 2*n - 1]

Rule 1524

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Wi
th[{q = Rt[b^2 - 4*a*c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Dist[e/
2 - (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[n2
, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {x^{9/2}}{\left (a+b x^2+c x^4\right )^2} \, dx &=2 \text {Subst}\left (\int \frac {x^{10}}{\left (a+b x^4+c x^8\right )^2} \, dx,x,\sqrt {x}\right )\\ &=\frac {x^{3/2} \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\text {Subst}\left (\int \frac {x^2 \left (6 a-b x^4\right )}{a+b x^4+c x^8} \, dx,x,\sqrt {x}\right )}{2 \left (b^2-4 a c\right )}\\ &=\frac {x^{3/2} \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\left (b^2+12 a c-b \sqrt {b^2-4 a c}\right ) \text {Subst}\left (\int \frac {x^2}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^4} \, dx,x,\sqrt {x}\right )}{4 \left (b^2-4 a c\right )^{3/2}}+\frac {\left (b^2+12 a c+b \sqrt {b^2-4 a c}\right ) \text {Subst}\left (\int \frac {x^2}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^4} \, dx,x,\sqrt {x}\right )}{4 \left (b^2-4 a c\right )^{3/2}}\\ &=\frac {x^{3/2} \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\left (b^2+12 a c-b \sqrt {b^2-4 a c}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-b+\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{4 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right )^{3/2}}-\frac {\left (b^2+12 a c-b \sqrt {b^2-4 a c}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-b+\sqrt {b^2-4 a c}}+\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{4 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right )^{3/2}}-\frac {\left (b^2+12 a c+b \sqrt {b^2-4 a c}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{4 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right )^{3/2}}+\frac {\left (b^2+12 a c+b \sqrt {b^2-4 a c}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}+\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{4 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right )^{3/2}}\\ &=\frac {x^{3/2} \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\left (b^2+12 a c+b \sqrt {b^2-4 a c}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-b-\sqrt {b^2-4 a c}}}-\frac {\left (b^2+12 a c-b \sqrt {b^2-4 a c}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-b+\sqrt {b^2-4 a c}}}-\frac {\left (b^2+12 a c+b \sqrt {b^2-4 a c}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-b-\sqrt {b^2-4 a c}}}+\frac {\left (b^2+12 a c-b \sqrt {b^2-4 a c}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} c^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-b+\sqrt {b^2-4 a c}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.32, size = 189, normalized size = 0.40 \begin {gather*} \frac {1}{8} \left (\frac {4 x^{3/2} \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {4 \text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {\log \left (\sqrt {x}-\text {$\#$1}\right )}{b \text {$\#$1}+2 c \text {$\#$1}^5}\&\right ]}{c}+\frac {\text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {-4 b^2 \log \left (\sqrt {x}-\text {$\#$1}\right )+10 a c \log \left (\sqrt {x}-\text {$\#$1}\right )+b c \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}+2 c \text {$\#$1}^5}\&\right ]}{c \left (b^2-4 a c\right )}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^(9/2)/(a + b*x^2 + c*x^4)^2,x]

[Out]

((4*x^(3/2)*(2*a + b*x^2))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (4*RootSum[a + b*#1^4 + c*#1^8 & , Log[Sqrt[x
] - #1]/(b*#1 + 2*c*#1^5) & ])/c + RootSum[a + b*#1^4 + c*#1^8 & , (-4*b^2*Log[Sqrt[x] - #1] + 10*a*c*Log[Sqrt
[x] - #1] + b*c*Log[Sqrt[x] - #1]*#1^4)/(b*#1 + 2*c*#1^5) & ]/(c*(b^2 - 4*a*c)))/8

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.07, size = 121, normalized size = 0.26

method result size
derivativedivides \(\frac {-\frac {b \,x^{\frac {7}{2}}}{2 \left (4 a c -b^{2}\right )}-\frac {a \,x^{\frac {3}{2}}}{4 a c -b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-\textit {\_R}^{6} b +6 \textit {\_R}^{2} a \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{32 a c -8 b^{2}}\) \(121\)
default \(\frac {-\frac {b \,x^{\frac {7}{2}}}{2 \left (4 a c -b^{2}\right )}-\frac {a \,x^{\frac {3}{2}}}{4 a c -b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-\textit {\_R}^{6} b +6 \textit {\_R}^{2} a \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{32 a c -8 b^{2}}\) \(121\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(9/2)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)

[Out]

2*(-1/4*b/(4*a*c-b^2)*x^(7/2)-1/2*a/(4*a*c-b^2)*x^(3/2))/(c*x^4+b*x^2+a)+1/8/(4*a*c-b^2)*sum((-_R^6*b+6*_R^2*a
)/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")

[Out]

1/2*(b*x^(7/2) + 2*a*x^(3/2))/((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2) - integrate(-1/4
*(b*x^(5/2) - 6*a*sqrt(x))/((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 11032 vs. \(2 (375) = 750\).
time = 22.26, size = 11032, normalized size = 23.42 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")

[Out]

-1/8*(4*((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(sqrt(1/2)*sqrt(-(b^7 + 21*a*b^5*c
 + 168*a^2*b^3*c^2 + 3024*a^3*b*c^3 + (b^12*c^3 - 24*a*b^10*c^4 + 240*a^2*b^8*c^5 - 1280*a^3*b^6*c^6 + 3840*a^
4*b^4*c^7 - 6144*a^5*b^2*c^8 + 4096*a^6*c^9)*sqrt((b^8 + 54*a*b^6*c + 1377*a^2*b^4*c^2 + 17496*a^3*b^2*c^3 + 1
04976*a^4*c^4)/(b^18*c^6 - 36*a*b^16*c^7 + 576*a^2*b^14*c^8 - 5376*a^3*b^12*c^9 + 32256*a^4*b^10*c^10 - 129024
*a^5*b^8*c^11 + 344064*a^6*b^6*c^12 - 589824*a^7*b^4*c^13 + 589824*a^8*b^2*c^14 - 262144*a^9*c^15)))/(b^12*c^3
 - 24*a*b^10*c^4 + 240*a^2*b^8*c^5 - 1280*a^3*b^6*c^6 + 3840*a^4*b^4*c^7 - 6144*a^5*b^2*c^8 + 4096*a^6*c^9)))*
arctan(-1/2*((b^9 + 19*a*b^7*c + 124*a^2*b^5*c^2 - 2160*a^3*b^3*c^3 + 5184*a^4*b*c^4 - (b^14*c^3 - 12*a*b^12*c
^4 - 48*a^2*b^10*c^5 + 1600*a^3*b^8*c^6 - 11520*a^4*b^6*c^7 + 39936*a^5*b^4*c^8 - 69632*a^6*b^2*c^9 + 49152*a^
7*c^10)*sqrt((b^8 + 54*a*b^6*c + 1377*a^2*b^4*c^2 + 17496*a^3*b^2*c^3 + 104976*a^4*c^4)/(b^18*c^6 - 36*a*b^16*
c^7 + 576*a^2*b^14*c^8 - 5376*a^3*b^12*c^9 + 32256*a^4*b^10*c^10 - 129024*a^5*b^8*c^11 + 344064*a^6*b^6*c^12 -
 589824*a^7*b^4*c^13 + 589824*a^8*b^2*c^14 - 262144*a^9*c^15)))*sqrt((117649*a^4*b^20 + 9983358*a^5*b^18*c + 4
04714961*a^6*b^16*c^2 + 9897860448*a^7*b^14*c^3 + 158656107456*a^8*b^12*c^4 + 1707655509504*a^9*b^10*c^5 + 123
38818573824*a^10*b^8*c^6 + 58812305154048*a^11*b^6*c^7 + 177024646692864*a^12*b^4*c^8 + 304679870005248*a^13*b
^2*c^9 + 228509902503936*a^14*c^10)*x - 1/2*sqrt(1/2)*(2401*a^3*b^25 + 294294*a^4*b^23*c + 13335105*a^5*b^21*c
^2 + 323354360*a^6*b^19*c^3 + 4269253584*a^7*b^17*c^4 + 24537890304*a^8*b^15*c^5 - 79436754432*a^9*b^13*c^6 -
1621756588032*a^10*b^11*c^7 - 3506876964864*a^11*b^9*c^8 + 27305557622784*a^12*b^7*c^9 + 100201644490752*a^13*
b^5*c^10 - 142936235311104*a^14*b^3*c^11 - 677066377789440*a^15*b*c^12 - (2401*a^3*b^30*c^3 - 49049*a^4*b^28*c
^4 - 1432760*a^5*b^26*c^5 - 6473264*a^6*b^24*c^6 + 373184512*a^7*b^22*c^7 - 319185152*a^8*b^20*c^8 - 274088529
92*a^9*b^18*c^9 + 93871525888*a^10*b^16*c^10 + 774145638400*a^11*b^14*c^11 - 4486009651200*a^12*b^12*c^12 - 55
90781263872*a^13*b^10*c^13 + 81717925773312*a^14*b^8*c^14 - 108093958520832*a^15*b^6*c^15 - 454721122861056*a^
16*b^4*c^16 + 1497904875307008*a^17*b^2*c^17 - 1283918464548864*a^18*c^18)*sqrt((b^8 + 54*a*b^6*c + 1377*a^2*b
^4*c^2 + 17496*a^3*b^2*c^3 + 104976*a^4*c^4)/(b^18*c^6 - 36*a*b^16*c^7 + 576*a^2*b^14*c^8 - 5376*a^3*b^12*c^9
+ 32256*a^4*b^10*c^10 - 129024*a^5*b^8*c^11 + 344064*a^6*b^6*c^12 - 589824*a^7*b^4*c^13 + 589824*a^8*b^2*c^14
- 262144*a^9*c^15)))*sqrt(-(b^7 + 21*a*b^5*c + 168*a^2*b^3*c^2 + 3024*a^3*b*c^3 + (b^12*c^3 - 24*a*b^10*c^4 +
240*a^2*b^8*c^5 - 1280*a^3*b^6*c^6 + 3840*a^4*b^4*c^7 - 6144*a^5*b^2*c^8 + 4096*a^6*c^9)*sqrt((b^8 + 54*a*b^6*
c + 1377*a^2*b^4*c^2 + 17496*a^3*b^2*c^3 + 104976*a^4*c^4)/(b^18*c^6 - 36*a*b^16*c^7 + 576*a^2*b^14*c^8 - 5376
*a^3*b^12*c^9 + 32256*a^4*b^10*c^10 - 129024*a^5*b^8*c^11 + 344064*a^6*b^6*c^12 - 589824*a^7*b^4*c^13 + 589824
*a^8*b^2*c^14 - 262144*a^9*c^15)))/(b^12*c^3 - 24*a*b^10*c^4 + 240*a^2*b^8*c^5 - 1280*a^3*b^6*c^6 + 3840*a^4*b
^4*c^7 - 6144*a^5*b^2*c^8 + 4096*a^6*c^9))) - (343*a^2*b^19 + 21070*a^3*b^17*c + 600271*a^4*b^15*c^2 + 8903196
*a^5*b^13*c^3 + 62719920*a^6*b^11*c^4 - 15909696*a^7*b^9*c^5 - 2396812032*a^8*b^7*c^6 - 6953610240*a^9*b^5*c^7
 + 19591041024*a^10*b^3*c^8 + 78364164096*a^11*b*c^9 - (343*a^2*b^24*c^3 + 10437*a^3*b^22*c^4 + 90132*a^4*b^20
*c^5 - 1028432*a^5*b^18*c^6 - 14041152*a^6*b^16*c^7 + 70390272*a^7*b^14*c^8 + 646137856*a^8*b^12*c^9 - 3121520
640*a^9*b^10*c^10 - 11091935232*a^10*b^8*c^11 + 68335239168*a^11*b^6*c^12 + 24652283904*a^12*b^4*c^13 - 557256
278016*a^13*b^2*c^14 + 743008370688*a^14*c^15)*sqrt((b^8 + 54*a*b^6*c + 1377*a^2*b^4*c^2 + 17496*a^3*b^2*c^3 +
 104976*a^4*c^4)/(b^18*c^6 - 36*a*b^16*c^7 + 576*a^2*b^14*c^8 - 5376*a^3*b^12*c^9 + 32256*a^4*b^10*c^10 - 1290
24*a^5*b^8*c^11 + 344064*a^6*b^6*c^12 - 589824*a^7*b^4*c^13 + 589824*a^8*b^2*c^14 - 262144*a^9*c^15)))*sqrt(x)
)*sqrt(sqrt(1/2)*sqrt(-(b^7 + 21*a*b^5*c + 168*a^2*b^3*c^2 + 3024*a^3*b*c^3 + (b^12*c^3 - 24*a*b^10*c^4 + 240*
a^2*b^8*c^5 - 1280*a^3*b^6*c^6 + 3840*a^4*b^4*c^7 - 6144*a^5*b^2*c^8 + 4096*a^6*c^9)*sqrt((b^8 + 54*a*b^6*c +
1377*a^2*b^4*c^2 + 17496*a^3*b^2*c^3 + 104976*a^4*c^4)/(b^18*c^6 - 36*a*b^16*c^7 + 576*a^2*b^14*c^8 - 5376*a^3
*b^12*c^9 + 32256*a^4*b^10*c^10 - 129024*a^5*b^8*c^11 + 344064*a^6*b^6*c^12 - 589824*a^7*b^4*c^13 + 589824*a^8
*b^2*c^14 - 262144*a^9*c^15)))/(b^12*c^3 - 24*a*b^10*c^4 + 240*a^2*b^8*c^5 - 1280*a^3*b^6*c^6 + 3840*a^4*b^4*c
^7 - 6144*a^5*b^2*c^8 + 4096*a^6*c^9)))/(2401*a^3*b^16 + 179046*a^4*b^14*c + 6354369*a^5*b^12*c^2 + 131902344*
a^6*b^10*c^3 + 1713103344*a^7*b^8*c^4 + 13740938496*a^8*b^6*c^5 + 65167421184*a^9*b^4*c^6 + 166523848704*a^10*
b^2*c^7 + 176319369216*a^11*c^8)) - 4*((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(sqr
t(1/2)*sqrt(-(b^7 + 21*a*b^5*c + 168*a^2*b^3*c^2 + 3024*a^3*b*c^3 - (b^12*c^3 - 24*a*b^10*c^4 + 240*a^2*b^8*c^
5 - 1280*a^3*b^6*c^6 + 3840*a^4*b^4*c^7 - 6144*...

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(9/2)/(c*x**4+b*x**2+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")

[Out]

integrate(x^(9/2)/(c*x^4 + b*x^2 + a)^2, x)

________________________________________________________________________________________

Mupad [B]
time = 6.44, size = 2500, normalized size = 5.31 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(9/2)/(a + b*x^2 + c*x^4)^2,x)

[Out]

- ((a*x^(3/2))/(4*a*c - b^2) + (b*x^(7/2))/(2*(4*a*c - b^2)))/(a + b*x^2 + c*x^4) - atan(((((5435817984*a^10*b
*c^10 - 4096*a^3*b^15*c^3 + 1425408*a^4*b^13*c^4 - 32833536*a^5*b^11*c^5 + 323747840*a^6*b^9*c^6 - 1714421760*
a^7*b^7*c^7 + 5121245184*a^8*b^5*c^8 - 8170504192*a^9*b^3*c^9)/(128*(b^14 - 16384*a^7*c^7 + 336*a^2*b^10*c^2 -
 2240*a^3*b^8*c^3 + 8960*a^4*b^6*c^4 - 21504*a^5*b^4*c^5 + 28672*a^6*b^2*c^6 - 28*a*b^12*c)) - (x^(1/2)*((b^4*
(-(4*a*c - b^2)^15)^(1/2) - b^19 - 12386304*a^9*b*c^9 + 96*a^2*b^15*c^2 - 2752*a^3*b^13*c^3 + 55296*a^4*b^11*c
^4 - 585216*a^5*b^9*c^5 + 3350528*a^6*b^7*c^6 - 10665984*a^7*b^5*c^7 + 17891328*a^8*b^3*c^8 + 324*a^2*c^2*(-(4
*a*c - b^2)^15)^(1/2) + 3*a*b^17*c + 27*a*b^2*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(16777216*a^12*c^15 + b^24*c^
3 - 48*a*b^22*c^4 + 1056*a^2*b^20*c^5 - 14080*a^3*b^18*c^6 + 126720*a^4*b^16*c^7 - 811008*a^5*b^14*c^8 + 37847
04*a^6*b^12*c^9 - 12976128*a^7*b^10*c^10 + 32440320*a^8*b^8*c^11 - 57671680*a^9*b^6*c^12 + 69206016*a^10*b^4*c
^13 - 50331648*a^11*b^2*c^14)))^(1/4)*(1207959552*a^10*c^11 - 204800*a^3*b^14*c^4 + 5210112*a^4*b^12*c^5 - 562
29888*a^5*b^10*c^6 + 332922880*a^6*b^8*c^7 - 1163919360*a^7*b^6*c^8 + 2390753280*a^8*b^4*c^9 - 2650800128*a^9*
b^2*c^10))/(16*(b^12 + 4096*a^6*c^6 + 240*a^2*b^8*c^2 - 1280*a^3*b^6*c^3 + 3840*a^4*b^4*c^4 - 6144*a^5*b^2*c^5
 - 24*a*b^10*c)))*((b^4*(-(4*a*c - b^2)^15)^(1/2) - b^19 - 12386304*a^9*b*c^9 + 96*a^2*b^15*c^2 - 2752*a^3*b^1
3*c^3 + 55296*a^4*b^11*c^4 - 585216*a^5*b^9*c^5 + 3350528*a^6*b^7*c^6 - 10665984*a^7*b^5*c^7 + 17891328*a^8*b^
3*c^8 + 324*a^2*c^2*(-(4*a*c - b^2)^15)^(1/2) + 3*a*b^17*c + 27*a*b^2*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(1677
7216*a^12*c^15 + b^24*c^3 - 48*a*b^22*c^4 + 1056*a^2*b^20*c^5 - 14080*a^3*b^18*c^6 + 126720*a^4*b^16*c^7 - 811
008*a^5*b^14*c^8 + 3784704*a^6*b^12*c^9 - 12976128*a^7*b^10*c^10 + 32440320*a^8*b^8*c^11 - 57671680*a^9*b^6*c^
12 + 69206016*a^10*b^4*c^13 - 50331648*a^11*b^2*c^14)))^(3/4) + (x^(1/2)*(49*a^3*b^9*c + 15552*a^7*b*c^5 + 945
*a^4*b^7*c^2 + 6420*a^5*b^5*c^3 + 17712*a^6*b^3*c^4))/(16*(b^12 + 4096*a^6*c^6 + 240*a^2*b^8*c^2 - 1280*a^3*b^
6*c^3 + 3840*a^4*b^4*c^4 - 6144*a^5*b^2*c^5 - 24*a*b^10*c)))*((b^4*(-(4*a*c - b^2)^15)^(1/2) - b^19 - 12386304
*a^9*b*c^9 + 96*a^2*b^15*c^2 - 2752*a^3*b^13*c^3 + 55296*a^4*b^11*c^4 - 585216*a^5*b^9*c^5 + 3350528*a^6*b^7*c
^6 - 10665984*a^7*b^5*c^7 + 17891328*a^8*b^3*c^8 + 324*a^2*c^2*(-(4*a*c - b^2)^15)^(1/2) + 3*a*b^17*c + 27*a*b
^2*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(16777216*a^12*c^15 + b^24*c^3 - 48*a*b^22*c^4 + 1056*a^2*b^20*c^5 - 140
80*a^3*b^18*c^6 + 126720*a^4*b^16*c^7 - 811008*a^5*b^14*c^8 + 3784704*a^6*b^12*c^9 - 12976128*a^7*b^10*c^10 +
32440320*a^8*b^8*c^11 - 57671680*a^9*b^6*c^12 + 69206016*a^10*b^4*c^13 - 50331648*a^11*b^2*c^14)))^(1/4)*1i -
(((5435817984*a^10*b*c^10 - 4096*a^3*b^15*c^3 + 1425408*a^4*b^13*c^4 - 32833536*a^5*b^11*c^5 + 323747840*a^6*b
^9*c^6 - 1714421760*a^7*b^7*c^7 + 5121245184*a^8*b^5*c^8 - 8170504192*a^9*b^3*c^9)/(128*(b^14 - 16384*a^7*c^7
+ 336*a^2*b^10*c^2 - 2240*a^3*b^8*c^3 + 8960*a^4*b^6*c^4 - 21504*a^5*b^4*c^5 + 28672*a^6*b^2*c^6 - 28*a*b^12*c
)) + (x^(1/2)*((b^4*(-(4*a*c - b^2)^15)^(1/2) - b^19 - 12386304*a^9*b*c^9 + 96*a^2*b^15*c^2 - 2752*a^3*b^13*c^
3 + 55296*a^4*b^11*c^4 - 585216*a^5*b^9*c^5 + 3350528*a^6*b^7*c^6 - 10665984*a^7*b^5*c^7 + 17891328*a^8*b^3*c^
8 + 324*a^2*c^2*(-(4*a*c - b^2)^15)^(1/2) + 3*a*b^17*c + 27*a*b^2*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(16777216
*a^12*c^15 + b^24*c^3 - 48*a*b^22*c^4 + 1056*a^2*b^20*c^5 - 14080*a^3*b^18*c^6 + 126720*a^4*b^16*c^7 - 811008*
a^5*b^14*c^8 + 3784704*a^6*b^12*c^9 - 12976128*a^7*b^10*c^10 + 32440320*a^8*b^8*c^11 - 57671680*a^9*b^6*c^12 +
 69206016*a^10*b^4*c^13 - 50331648*a^11*b^2*c^14)))^(1/4)*(1207959552*a^10*c^11 - 204800*a^3*b^14*c^4 + 521011
2*a^4*b^12*c^5 - 56229888*a^5*b^10*c^6 + 332922880*a^6*b^8*c^7 - 1163919360*a^7*b^6*c^8 + 2390753280*a^8*b^4*c
^9 - 2650800128*a^9*b^2*c^10))/(16*(b^12 + 4096*a^6*c^6 + 240*a^2*b^8*c^2 - 1280*a^3*b^6*c^3 + 3840*a^4*b^4*c^
4 - 6144*a^5*b^2*c^5 - 24*a*b^10*c)))*((b^4*(-(4*a*c - b^2)^15)^(1/2) - b^19 - 12386304*a^9*b*c^9 + 96*a^2*b^1
5*c^2 - 2752*a^3*b^13*c^3 + 55296*a^4*b^11*c^4 - 585216*a^5*b^9*c^5 + 3350528*a^6*b^7*c^6 - 10665984*a^7*b^5*c
^7 + 17891328*a^8*b^3*c^8 + 324*a^2*c^2*(-(4*a*c - b^2)^15)^(1/2) + 3*a*b^17*c + 27*a*b^2*c*(-(4*a*c - b^2)^15
)^(1/2))/(8192*(16777216*a^12*c^15 + b^24*c^3 - 48*a*b^22*c^4 + 1056*a^2*b^20*c^5 - 14080*a^3*b^18*c^6 + 12672
0*a^4*b^16*c^7 - 811008*a^5*b^14*c^8 + 3784704*a^6*b^12*c^9 - 12976128*a^7*b^10*c^10 + 32440320*a^8*b^8*c^11 -
 57671680*a^9*b^6*c^12 + 69206016*a^10*b^4*c^13 - 50331648*a^11*b^2*c^14)))^(3/4) - (x^(1/2)*(49*a^3*b^9*c + 1
5552*a^7*b*c^5 + 945*a^4*b^7*c^2 + 6420*a^5*b^5*c^3 + 17712*a^6*b^3*c^4))/(16*(b^12 + 4096*a^6*c^6 + 240*a^2*b
^8*c^2 - 1280*a^3*b^6*c^3 + 3840*a^4*b^4*c^4 - 6144*a^5*b^2*c^5 - 24*a*b^10*c)))*((b^4*(-(4*a*c - b^2)^15)^(1/
2) - b^19 - 12386304*a^9*b*c^9 + 96*a^2*b^15*c^2 - 2752*a^3*b^13*c^3 + 55296*a^4*b^11*c^4 - 585216*a^5*b^9*c^5
 + 3350528*a^6*b^7*c^6 - 10665984*a^7*b^5*c^7 +...

________________________________________________________________________________________